Labeling Defects in CT Images of Hardwood Logs With Species-Dependent and Species-Independent Classifiers
نویسندگان
چکیده
This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize pixel values; 2) a feedforward neural network assigns tentative labels to individual image pixels; and 3) a morphological post-processing step removes noise and refines image regions. The normalization step facilitates the classification of wood features across different logs and different species. The neural network assigns tentative labels using normalized pixel values from small three-dimensional (3D) neighborhoods. We demonstrates the utility of this approach when the the network is trained using a single species of wood. This paper also considers the effect of training the network with samples from more than one species. Because small neighborhoods are used in either case, the classifier can be made to operate at real-time rates. Tests of the method using ten-fold cross-validation and CT images from three different logs resulted in a classification accuracy of approximately 95%.
منابع مشابه
A comparison of several artificial neural network classifiers for CT images of hardwood logs
Knowledge of internal log defects, obtained by scanning, is critical to efficiency improvements for future hardwood sawmills. Nevertheless, before computed tomography (CT) scanning can be applied in industrial operations, we need to automatically interpret scan information so that it can provide the saw operator with the information necessary to make proper sawing decisions. Our current approac...
متن کاملCt Imaging of Hardwood Logs for Lumber Production
Hardwood sawmill operators need to improve the conversion of raw material (logs) into lumber. Internal log scanning provides detailed information that can aid log processors in improving lumber recovery. However, scanner data (i.e. tomographic images) need to be analyzed prior to presentation to saw operators. Automatic labeling of computer tomography (CT) images is feasible, but no research ha...
متن کاملAutomated Analysis of CT Images for the Inspection of Hardwood Logs
-This paper investigates several classifiers for labeling internal features of hardwood logs using computed tomography (CT) images. A primary motivation is to locate and classify internal defects s o that an optimal cutting strategy can be chosen. Previous work has relied on combinations of low-level processing, image segmentation, autoregressive texture modeling, and knowledge-based analysis. ...
متن کاملProgress in Analysis of Computed Tomography (CT) Images of Hardwood Logs for Defect Detection
This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make sawing decisions. The probl...
متن کاملRobust Spatial Autoregressive Modeling for Hardwood Log Inspection
We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image analysis methods. This pape...
متن کامل